ANTIXENOSIS AND ANTIBIOSIS AS MECHANISMS OF RESISTANCE TO TETRANYCHUS URTICAE KOCH (ACARI: TETRANYCHIDAE) IN COMMON BEANS

S. S. MODARRES NAJAFABADI¹, R. VAFAEI SHOUSHTARI², A. A. ZAMANI³, M. ARBABI ⁴ AND H. FARAZMAND ⁵

1. Department of Entomology, Islamic Azad University, Arak Branch, Arak, Iran. 2. Department of Entomology, Islamic Azad University, Arak Branch, Arak, Iran. 3. Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran. 4. Department of Agricultural Zoology, Iranian Research Institute of Plant Protection, Iran. 5. Department of Agricultural Entomology, Iranian Research Institute of Plant Protection, Iran.

Corresponding author email: modarres_705@yahoo.com

ASTRACT: This research was conducted to use bean resistance against T. urticae in Khomein region (Arak, Iran). At first, the study was initiated by screening 458 chiti bean (P. vulgaris) germplasm for their resistance to T. urticae in field experiments. According to this scoring system, 15 genotypes were rated resistant to the infestation of T. urticae. From these resistant genotypes, the four most resistant bean genotypes, KS21247, KS21181, KS21212 and KS21189, were chosen for investigation of their underlying resistance mechanism in greenhouse tests, during 2008-2010. To antixenosis mechanism of resistance, 200 adult mites were released in the center of five potted bean plants of four different resistant genotypes and one susceptible control genotype (KS21258). After counting mites on each plant after 24 and 48 hours, a clear preference for the genotype KS21189 could be defined, while KS21247 clearly was not preferred by the mites. Antibiosis was studied on excised leaf discs (4cm²) of the same five bean genotypes mentioned above in 80 replication for each genotype. Adult mites were reared on these discs and life parameters were determined. Based on the life-table comparisons, both KS21247 and KS21181 were found to be less favorable for the mite development.

Key words: Tetranychus urticae, Phaseolus vulgaris, Antixenosis, Antibiosis, Khomein region.

INTRODUCTION

Bean (Phaseolus vulgaris L.) was domesticated from a wild-growing vine distributed in the highlands of tropical America (Gepts and Debouck, 1991). It has now become one of the most important and widely grown crops in the world, and commercially produced in Markazi, Lorestan, Fars and Zanjan provinces of Iran. Based on reports by the Iranian Ministry of Agriculture in 2005, overall, this crop is grown on more than 105000 ha annually in Iran (Statistical Bulletin, Iran, 2005). Various pests have negative effects on bean production in Iran which among them the two-spotted spider mite (TSSM), Tetranychus urticae Koch, has been considered as a major pest in many bean-growing areas of Iran (Rott and Ponsoby, 2000; Ragkou et al., 2004; Khanjani, 2005; Fikru and Leon, 2003; Khanjani and Haddad, 2006). TSSM infests the underside of leaves, where profuse webbing may be present. T. urticae feeds using a piercing-sucking process that damages plant cells and tissues. This behavior leads to the appearance of characteristic yellow chlorotic spots on leaves. Because the chloroplasts in leaves are gradually destroyed as the population of feeding mites increases, photosynthesis declines, stomata close, and transpiration decreases, leading to reduced production (Brandenburg and Kennedy, 1987; Martinez-Ferrer et al., 2006). The rapid developmental rate, short generation time and high net reproductive rate of T. urticae allows them to achieve damaging population levels very quickly when growth conditions are good, resulting in an equally rapid decline of host plant quality. The population growth parameters of T. urticae such as developmental rate, survival, reproduction and longevity may vary in response to changes in temperature, host plant species, host plant nutrition, cultivar kind, phenological stage, exposure to pesticides, relative humidity, etc. (Sabelis, 1981; Carey and Bradly, 1982; Brandenburg and Kennedy, 1987; Wermelinger et al., 1991; Wilson, 1994a, 1994b; Dicke, 2000;
James and Price, 2002; Marcic, 2003; Skorupska, 2004).

Antibiosis is a resistance influencing biological processes of insects, like survival, growth, generation time, fecundity, and longevity (van Emden, 1997). As in antixenosis, antibiosis involves both insect and plant factors. The quantity and quality of primary as well as secondary plant metabolites are frequently associated with antibiosis (Pedigo, 1999). Biological knowledge, in particular life table attributes, is significant step to an improved reorganization of the population dynamics of pests. On the other hand, host plants have main effects on development, mortality and fecundity rates of insects and mites. Therefore, knowledge of cultivar susceptibility or resistance might be a fundamental component of an integrated pest management program (IPM) for any crop. Such information can be used in developing an insect-resistant cultivar (Jyoti et al., 2001) or designing and good assays for breeding new varieties (Stoner and Shelton, 1988). The life table parameters, including net reproductive rate \((R_0)\), mean generation time \((T)\), doubling time \((DT)\), finite rate of increase \((\lambda)\) and intrinsic rate of natural increase \((r_m)\) have been used to evaluate the susceptibility or resistance of several host plants in relation to various pests (Tsai and Wang, 2001; Satar and Yokomi, 2002; Razmjou et al., 2009a; Carey, 1993). Among these parameters, the intrinsic rate of natural increase represents one measure commonly used to evaluate the level of plant resistance to insects (Razmjou et al., 2006). Plants supporting pest populations display lower values for \(r_m\) and are relatively more resistant than plants supporting populations with higher values of this parameter (Yang and Chi, 2006).

In this research, resistance in beans to two-spotted spider mite was studied under field and greenhouse conditions at Bean Research Institute of Khomein, Iran. At first, the study was initiated by screening 458 chiti bean \((P. vulgaris)\) germplasm for their resistance to \(T. urticae\) in field experiments over several planting seasons and so, according to this scoring system, resistance genotypes were chosen for investigation of their underlying resistance mechanisms in greenhouse tests.

MATERIALS AND METHODS

Plant Materials

The bean genotypes used in this study (Mechanisms of Resistance: Antixenosis and Antibiosis) were selected on the basis of field evaluation for resistance to \(T. urticae\) in greenhouse conditions during 2008-2010. They included four moderately resistant genotypes: KS21247, KS21181, KS21212 and KS21189. Bean plants of each genotype used for antixenosis tests were grown individually in plastic pots (20 cm diameter×25 cm height) filled with fertilized field soil and used at the age of 21 days, with at least two trifoliate leaves developed. For antibiosis tests, bean plants were grown in the same way and leaf disks \((4cm^2)\) were cut when the young leaves had reached the necessary size.

Mite colony

For greenhouse trials, adults of two-spotted spider mite were originally collected from common bean fields of the Khomein region, Iran in May 2008. These mites were reared on bean plants that cultivated on plastic pots \((20cm\text{ diameter} \times 25 \text{ cm height})\) in a growth chamber \((27\pm2^\circ C, 70\pm5\%RH\text{ and a photoperiod of } 16L:8D\text{ h.})\) for at least two months (several generations) before conducting the experiments. All experiments were performed at the same above mentioned conditions in growth chambers.

Antixenosis Tests

Greenhouse and field choice tests were conducted to evaluate the preference of \(T. urticae\) for different bean genotypes. In the multiple-choice test, five bean plants (four different resistant genotypes: KS21247, KS21181, KS21212 and KS21189 and one susceptible control genotype: KS21258) representing the five genotypes selected for this study were arranged in a circle around a platform \((30cm\text{ diameter, with a distance of about } 20cm\text{ between plants})\) within an insect proof cage \((100\times70\times60 \text{ cm})\). One trifoliate leaf from each plant was placed on the platform, without touching the others. Two hundred adult female mites (collected 18 days after oviposition by the parental females) were released in the center of the platform. Individual mites moved and colonized different plants by their own free choice. The choice of plant was scored by carefully counting the number of mites on each entire plant. Care was taken not to disturb the mites. Two independent multiple-choice tests were carried out with 20 replicates each. The number of mites on plants was counted at eight hours after the release of adult mites. Ovipositional preference was recorded in the test 56 hours after release. Eggs were counted on all
leaves under a stereomicroscope with transmitting light.

Antibiosis Tests

To evaluate possible antibiotic effects, the age-specific life table of *T. urticae* reared on bean plants of each of the five genotypes (KS21247, KS21181, KS21212, KS21189, KS21258) was constructed to compare performance of the mites in climatic chambers (27±2°C, 70±5%RH and a photoperiod of 16L:8D h.). Several life-history traits (development time and survivorship of immature stages, adult body length, longevity of adults, daily oviposition rate) and demographic parameters (net reproductive rate (*R₀*), generation time (*T*), intrinsic rate of natural increase (*rₙ*), finite rate of increase (*λ*) and doubling time (*D_T*)) were determined for the cohort reared on each bean genotype. To perform the experiments, the leaf disc method was used (Pedigo and Buntin, 1994; Naher et al., 2006). Each leaf disc was 4cm² of area center of leaves that this unit separated by plastic padding 2cm×2cm. Each leaf disc was placed on plastic Petri dishes (8cm diameter×1.5cm height with a hole in its center). Thereafter, one fully expanded young leaf (third leaf below the apical meristem of one month-old plants) was randomly collected and used for the leaf disc preparation. The leaves of different common bean genotypes were selected from all replications and cut into a leaf disc (2cm×2cm) and then placed on a water-saturated cotton in the Petri dish with the underside facing upward. During the experiments, all the common bean genotypes were periodically planted in the greenhouse (every 10 days), and to reduce the effects of plant age on mite development and fecundity, the new leaf discs were prepared from their leaves and the mites transferred on them. Newly hatched larvae were transferred into a separate dish using a small soft brush. The larval cohort on each bean genotype consisted of 78 to 96 individuals. The duration and mortality of immature stages, i.e. egg, larva, nymph (nymph I+II combined), and adult, were recorded. The longevity of resulting adults and the number of eggs laid per female per day were measured. To determine the oviposition rate and longevity of adult mites on the different bean genotypes, the individuals that developed on each genotype were separated at the stage of egg and transferred singly into individual petri dishes. Upon emergence of adults, unmated females were observed separately throughout their lifetime. An adult cohort of 48 to 74 individuals was started for each bean genotype. Every second day, living and dead individuals were recorded. Each live mite was transferred into a new petri dish, while the number of eggs on the old leaf disk was counted under a stereomicroscope with transmitting light.

Statistical Analyses

1- **Antixenosis tests in greenhouse:** In the greenhouse choice tests for antixenosis, only those *T. urticae* that were present on the plants were taken into account. Therefore, we calculated the percentage of mites recorded from each plant within a test cage, and the data analysis was based on the percentage of total encountered insects rather than on the absolute number of mites on a plant. All percentage data were subjected to arcsine-square-root transformation prior to analysis. A general linear model with repeated measures (times of counting) was applied to the analysis of data from these choice tests, using the program SPSS 10 (SPSS, 2004).

2- **Antibiosis tests in greenhouse:** The life table parameters were included: net reproductive rate (*R₀*), intrinsic rate of natural increase (*rₙ*), finite rate of increase (*λ*) and doubling time (*D_T*). Data on immature developmental period and adult longevity of TSSM were analyzed with one-way analyses of variance (ANOVA). When the variation among cultivars was significant, means comparison were done based on Duncan’s multiple range test (*P*<0.05). The statistical differences of life table parameters among various bean cultivars were detected using the jackknife procedure (Meyer et al., 1986; Maia et al., 2000). In this procedure, jackknife pseudo values of each life table parameter were calculated for *n* females by following equation:

$$ A_{ij} = n \times A_{(all)} \cdot (n - 1) \times A_{ij} $$

Where A_{ij} is the jackknife pseudo value, *n* is the number of females, $A_{(all)}$ is the calculated life table parameters for all females and A_{ij} is the calculated parameters for (*n*−1) females. Various life table parameters including: *rₙ*, *R₀*, *T*, *λ* and *D_T* were inserted in this equation instead of (*λ*). Consequently, *n* calculated jackknife pseudo values were subjected to one-way ANOVA and if significant differences were detected a Duncan’s multiple range test were run (*P*<0.05). The obtained sex ratio of offspring were compared to expected ratio of 1:1 by a chi-square test ($χ^2$, *P*<0.05). A *t*-test was run for comparison of total immature developmental times of males and females on the
same cultivar. All statistical analysis were carried out using the Minitab statistical software (MINITAB, 2000) and SPSS statistical packages (SPSS, 2004).

RESULTS

1- Antixenosis tests in greenhouse: The first multiple-choice test demonstrated a significant effect of the bean genotype on the number of T. urticae colonizing a plant (F=8.41;df=4,81;P=0.001). The number of mites on a given bean genotype did not vary over different periods of time after mite release (F=0.87;df=4,125;P>0.945). Ovipositional preference was not influenced since the bean genotype did not have a significant effect on the number of eggs laid per female (F=1.548;df=4,68;P>0.756). Concurrently, the second multiple-choice test showed that the number of mites on bean plants of different genotypes was significantly different (F=9.48;df=4,94;P<0.001) and that the number of mites on bean plants of the same genotype did not change significantly during the experimental period (F=0.84;df=2,36;P>0.05). The results of percentage of mites on bean plants showed that KS21189 was the largest at all counting times and that on KS21247 was always the least. The percentage of mites tended to increase on KS21189 from 24 to 48 hours after mite release and to decrease on KS21247 over this time period. This might underlay the significance of interaction between mites numbers on bean plants counted at different times and on different bean genotypes (Test 1:F=6.36;df=4,328;P<0.05 and Test 2:F=8.25;df=4,248;P<0.05). The number of mites on bean plants reflected preferential choices of T. urticae for different genotypes after 24 and 48 hours in the first and second multiple-choice tests, respectively. When the pooled mean percentages of mites recorded on the five bean genotypes were compared (Figure 1), the ranking order of preference for different genotypes by T. urticae was consistent in both tests. After KS21258 genotype (check genotype), KS21189 was the most preferred, having 43±1.4 and 28±1.8 of T. urticae counted in Test 1 and Test 2, respectively. KS21247 genotype was the least preferred, with the number of T. urticae on the bean plants accounting for 24±1.1 in Test 1 and 13±1.7 in Test 2. The preference of mites for other genotypes was intermediate. All these tests in both greenhouse and field have shown that KS21247 genotype exhibits a strong antixenotic effect, as a significantly lower number of T. urticae was always found on KS21247 genotype in comparison with other genotypes. This may explain the phenomenon noticed in previous field resistance trials that T. urticae populations were consistently low on KS21247 genotype.

2- Antibiosis tests in greenhouse: The development times of various stages (males and females) of TSSM on five bean genotypes are given in Table 1. No significant variations among five host plants were observed for egg incubation period (F=3.21; df=4,314;P<0.05). While the development periods of larvae (F=8.56;df=4,248;P<0.05), protonymphs (F=3.71;df=4,200;P<0.05) and deutonymphs (F=6.89;df=4,166;P<0.05) showed significantly differences among various host plants. Total immature developments of both males (F=6.89;df=4,86;P<0.05) and females (F=9.63;df=4,328;P<0.05) were significantly different among five bean genotypes and ranged from 15.96±0.20 to 18.71±0.24 days for females and from 15.89±0.24 to 19.37±0.31 days for males on KS21258 and KS21247, respectively (Table 1). Overall, no significant differences were observed between development times of males and females on the same bean genotypes (t-test, α=0.05).

The pre-oviposition, oviposition, post-oviposition periods and females longevities of TSSM on five bean genotypes are shown in Table 1. The post-oviposition periods (F=6.14;df=4,328;P<0.05) and oviposition periods (F=8.35;df=4,328;P<0.05) of TSSM are significantly influenced by the bean genotypes. No significant host plant effects were observed on the pre-oviposition period of TSSM. Host plant genotypes significantly affected on the total females longevities (F=11.58;df=4,328;P<0.05). The shortest and longest females longevities were observed on KS21247 (10.08±0.23 days) and KS21258 (11.35±1.24 days), respectively. The mean number of daily eggs laid by each female and total fecundity data of TSSM are given in Table 2. The mean daily eggs laid exhibited significant differences among five bean genotypes (F=8.21;df=4,44;P<0.05). Two spotted spider mite, laid the highest daily number of eggs on KS21258 (16.16±1.25), which was significantly more than on the other genotypes. This was followed by KS21189 and KS21247. Also, total fecundity of TSSM (F=14.56;df=4,44;P<0.05) was significantly different among the tested bean genotypes.

Life table parameters of the TSSM on the five bean genotypes are presented in Table 3.
The analysis of the all life table parameters (R_0, r_m, λ, T and DT) indicated significant differences among five host plants ($P<0.05$). The net reproductive rate (R_0) was the highest on KS21258 (62.38±1.65 females/females/generation) and lowest on KS21247 (26.11±1.40 females/females/generation). The intrinsic rate of natural increase (r_m) and the finite rate of increase (λ) showed a pattern similar to R_0 in which it was highest on KS21258 and lowest on KS21247 genotypes. The mean generation time (T), is required time for population of TSSM to multiply as R_0 and varied from 15.24±1.12 to 25.55±1.04 days KS21258 and KS21247 genotypes, respectively. The lowest and greatest values of doubling times (DT) were estimated to be 2.54±1.14 and 5.33±1.25 days on KS21258 and KS21247 genotypes, respectively.

In summary, both antixenosis and antibiosis have shown to be categories of resistance in common beans to T. urticae. Antixenotic effects are strongly exhibited in the genotype KS21247. A certain degree of antibiotic effects is shown in some genotypes, particularly in the genotype KS21247, which causes a high mortality of immatures and a low intrinsic rate of natural growth in T. urticae. It must be pointed out, however, that the two other moderately resistant genotypes (KS21181 and KS21212) also show low damage and good reproductive adaptation in the field. These findings suggest that the resistance of common beans to T. urticae might even be the combined functions of antixenosis and antibiosis.

![Figure 1. Number of T. urticae per bean genotypes in first and second multiple-choice tests for antixenosis. Each test was analyzed separately, block with different letters are significantly different (P < 0.05) within a test.](image)

| Table 1. Development times (in days) of immature stages of T. urticae on five bean genotypes (Mean± SE). |
|----------------|----------------|----------------|----------------|----------------|----------------|
| Bean genotypes | Stages | Chiti Ks21258 | Chiti Ks21189 | Chiti Ks21212 | Chiti Ks21181 |
| | | Chiti Ks21247 | Chiti Ks21212 | Chiti Ks21181 | Chiti Ks21247 |
| Egg | | 2.00±0.04 a | 2.00±0.04 a | 2.00±0.03 a | 2.00±0.03 a |
| | | 2.01±0.09 a | 2.10±0.08 a | 2.00±0.07 a | 2.05±0.12 a |
| Larva | 4.21±0.06 e | 4.45±0.02 d | 4.75±0.06 c | 5.08±0.02 b | 5.29±0.11 a |
| | 4.45±0.04 d | 4.80±0.05 c | 4.99±0.03 c | 5.20±0.08 b | 5.52±0.09 a |
| Protonymph | 4.85±0.02 d | 4.98±0.08 d | 5.15±0.05 c | 5.31±0.06 b | 5.72±0.06 a |
| | 4.45±0.06 d | 4.81±0.05 c | 5.22±0.09 b | 5.75±0.02 a | 5.89±0.08 a |
| Deutonymph | 4.99±0.08 d | 5.10±0.09 c | 5.28±0.03 c | 5.49±0.05 b | 5.70±0.04 a |
| | 4.98±0.05 e | 5.15±0.06 d | 5.32±0.00 c | 5.70±0.03 b | 5.91±0.02 a |
| Total development time | 15.96±0.20 c | 16.53±0.23 d | 17.18±0.17 c | 17.88±0.16 b | 18.71±0.24 a |
| | 15.89±0.24 e | 16.86±0.24 d | 17.53±0.25 c | 18.65±0.20 b | 19.37±0.31 a |

Means followed by the same letters within rows are not significantly different (one-way ANOVA, α=0.05).

| Table 2. Pre-oviposition, Oviposition, Post-oviposition periods and Reproduction rate of T. urticae on five bean genotypes (Mean± SE). |
|----------------|----------------|----------------|----------------|----------------|----------------|
| Bean genotypes | Stages | Chiti Ks21258 | Chiti Ks21189 | Chiti Ks21212 | Chiti Ks21181 |
| | | Chiti Ks21247 | Chiti Ks21212 | Chiti Ks21181 | Chiti Ks21247 |
| Pre-oviposition | 1.00±0.04 a | 1.37±0.07 ab | 1.28±0.04 a | 1.50±0.08 ab | 2.10±0.23 b |
| Oviposition | 8.95±0.80 a | 8.58±1.02 a | 8.63±0.95 a | 8.36±1.10 a | 6.98±1.22 b |
| Post-oviposition| 1.40±0.40 a | 1.00±0.59 a | 1.20±0.51 a | 1.00±0.71 a | 1.00±0.93 a |
| Total Reproduction rate | 11.35±1.24 b | 10.95±1.68 ab | 11.11±1.50 b | 10.86±1.89 ab | 10.08±2.38 a |
| Daily Fecundity | 16.16±1.25 a | 12.09±1.69 bc | 13.33±1.47 b | 10.98±1.89 c | 12.63±2.12 bc |
| Total Fecundity | 142.05±6.58 a | 99.55±8.23 bc | 116.54±6.98 b | 90.52±8.54 c | 82.45±8.89 c |

Means followed by the same letters within rows are not significantly different (one-way ANOVA, α=0.05).
Table 3. Life table parameters of *T. urticae* reared on five bean genotypes (Mean± SE).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Bean genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chiti Ks21258</td>
</tr>
<tr>
<td>(r_m)</td>
<td>(mites/day)</td>
</tr>
<tr>
<td>(R_0)</td>
<td>(mites/generation)</td>
</tr>
<tr>
<td>(T)</td>
<td>(days)</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>(mites/day)</td>
</tr>
<tr>
<td>(DT)</td>
<td>(days)</td>
</tr>
</tbody>
</table>

Means followed by similar letters in rows are not significantly different (one-way ANOVA, \(\alpha=0.05 \)).

DISCUSSION

In the present study, resistance mechanisms to *T. urticae* investigated on the bean (*Phaseolus vulgaris* L.) Genotypes. Infestation by adult *T. urticae* on bean plant can cause significant economic injury on common beans in the field. This infestation level was reached and surpassed on all bean genotypes at 8 and 15 days after plot in the field trials. Differences in the mite abundance were observed between some genotypes; for example, the density of mites was high on Chiti KS21258 and very low on Chiti KS21247. This result is consistent with findings from previous field screening studies (Cardona et al., 2002; Bueno and Cardona, 2003) and from multiple-choice tests with different plant genotypes in the greenhouse (Frei et al., 2003). The low level of mites populations on the susceptible genotypes towards the end of the experimental period in the field trials was most likely due to the leaf desiccation caused by this mite, rendering these genotypes unsuitable for the mite’s survival and reproduction. Thus, it is indispensable to compare the infestation level on a given bean genotype with the resulting damage and reproductive adaptation scores, as well as with the yield losses in order to evaluate the tolerance type of resistance (Smith et al., 1994). The two diverging categories of bean genotypes, previously defined as resistant and susceptible (Cardona et al., 2002), showed differential damage and reproductive adaptation scores in response to natural mites infestation in the field trials. For example, the resistant genotypes Chiti KS21258 and KS21224 had particularly low damage and high RA in spite of high infestation, indicating a high degree of tolerance. These results verify the ratings of the genotypes into the resistant/susceptible categories (Cardona et al., 2002).

To estimating resistance mechanisms to *T. urticae* on the bean genotypes, the population growth parameters were recognized. These parameters indicate insect population growth rates in the current and next generations (Frei et al., 2003) and understanding them is essential to develop an integrated pest management (IPM) strategy. The results showed that the population growth parameters of *T. urticae* may vary in response to changes in bean genotypes. Total developments of both males and females were significantly different among five bean genotypes. Chiti KS21258 with 15.96±0.20 and 15.89±0.24 days and Chiti KS21247 with 18.71±0.24 and 19.37±0.31 days for females and males were the shortest and longest, respectively (Table 1). This results are conformance with Mondal and Ara (2006) on fresh bean (*Lablab purpureus* L.) and Deciyanto et al. (1989) on six cultivars of *Mentha piperita* L. and *M. arvensis* L. results.

Our findings indicated that the development times of immature stages of TSSM females were similar to males on each bean genotype in greenhouse conditions. This result is close to the results of Laing (1969), who found similar development times for males and females (16.1 and 16.9 days, respectively) but the results of other researchers (van de Vrie et al., 1972; Rajakumar et al., 2005) are different from what was reported here (Table 2). van de Vrie et al. (1972) emphasized the occurrence of the differences between males and females as to development rate. Shih et al. (1976) reported lower values for longevity of females (19.1 days) and males (14.6 days), but according to van de Vrie et al. (1972) specimens of different stages can be vary considerably in relation to their exposure to environmental...
conditions. According to this study, the number of dead TSSM immature at the end of experiment was very low on the bean cultivars (Table 1). Low mortality of immature stages suggests that the bean cultivars were not harmful to this mite. So, these results conform Shih and Wang (1996), except the development times of deutonymphs. They also demonstrated that these variations could be ascribed to differences in plant quality. The host plant affected on fecundity and longevity of development times of mite immature stages.

The net reproductive rate (R_0) and the intrinsic rate of natural increase (r_m) are important indicators of tetranychid population dynamics (Sabelis, 1985; Krips et al., 1998). Comparisons of R_0 and r_m often provide considerable insight beyond that available from the independent analysis of individual life-history parameters (Zhang et al., 2007). In the present study, bean cultivars greatly affected TSSM fecundity and life-table parameters (Table 3). The r_m values ranged from 0.269±0.031 to 0.129±0.048 females/female/day. Hence, the population development of two-spotted spider mite was the shortest on Chiti KS21258. This was mainly due to short development time, an early peak in reproduction, high daily egg production and high total fecundity. Our findings revealed that Chiti KS21247 and KS21181 were less suitable cultivars for two-spotted spider mite. These values are close to those estimated for the spider mites reared on other host plants (Sabelis, 1985; Gotoh and Gomi, 2003; Kasap, 2003; Kafil et al., 2007). Razmjou et al (2009b, 2009c) reported Sayyad cultivar was the most favorable host for two-spotted spider mites with r_m=0.295 and Talash cultivar with r_m=0.214 was unfavorable host. Sabelis (1985, 1991) has reported r_m values of T. urticae from 0.219 to 0.336 and Ahmad et al. (2007) has estimated r_m values from 0.038 to 0.142 females/female/day on common bean.

REFERENCES

SPSS (2004) SPSS base 13.0 user's guide. SPSS incorporation, Chicago, IL.

